Faraday's laws of electrolysis

The first law of Faraday states that the mass of a substance deposited or liberated at a particular electrode is proportional to the amount of charge passing through the electrodes. W or the mass of the substance directly proportional to Q where Q is(It), if(I) is the current passing is one ampere and t the time taken as one second then(W) will be equal to Z. (Z) is electrochemical equivalent. W=ZQ or W=Zit

W=Z when I is one ampere and t is one second.

Faraday's second law it states that the amount of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical Equivalent weight.(atomic mass of the metal ÷ number of electron required to reduce the cation).

Equivalent charge is equal to 1 Faraday equal to 96500 coulomb.

W = Equivalent weight ÷1 Faraday (96500)X(it)

Charge of one electron is = 1.6 into 10^{-19} .

One mole = 6.022 into $10^2 3$ electrons therefore 1 mole of electron charge will carry $1.6 \times 10^{-19} \times 6.022 \times 10^2 3 = 96500 \text{ C(1F)}$.

There were no constant current sources available during times. The general practice was to put a coulometer (a standard of metal (generally silver or copper) deposited or consume sources available and the quantity of electricity Q , passed $Q = lt$. Q is in coloumbs when I is in ampere and t is in see The amount of electricity (or charge) required for	ing Faraday's ard electrolytic n the amount hed. However, nt current (n) i is given by cond.
example, in the reaction:	reaction. For
Ag *(aq) + $e^- \rightarrow Ag(s)$ One mole of the electron is required for the reduction of silver ions.	(3.30) n of one mole
We know that charge on one electron is equal to 1.6 Therefore, the charge on one mole of electrons is equ $N_A \times 1.6021 \times 10^{-19}$ C = 6.02×10^{23} mol ⁻¹ × 1.60 C = 96487 C mol ⁻¹	6021× 10 ⁻¹⁹ C. ual to: 21 × 10 ⁻¹⁹
This quantity of electricity is called Faraday and is r the symbol F .	represented by
For approximate calculations we use 1F Y 96500 C	mol^{-1} .
$Mg^{2+}(l) + 2e^{-} \longrightarrow Mg(s)$	(3.31)
$Al^{3+}(l) + 3e^{-} \longrightarrow Al(s)$ It is obvious that one mole of Mg^{2+} and Al^{3+} req electrons (2F) and 3 mol of electrons (3F) respectively. The through the electrolytic cell during electrolysis is equal of current in amperes and time in seconds. In commerce of metals, current as high as 50,000 amperes are used to about 0.518 F per second.	(3.32) uire 2 mol of charge passed to the product cial production that amounts
A solution of $CuSO_4$ is electrolysed for 10 minutes with 1.5 amperes. What is the mass of copper deposited at	a current of the cathode?
$\frac{m}{2} t = 600 \text{ s charge} = \text{current} \times \text{time} = 1.5 \text{ A} \times 600 \text{ s} = \text{According to the reaction:}$	900 C
$Cu^{-1}(aq) + 2e = Cu(s)$ We require 2F or 2 × 96487 C to deposit 1 mol or 63 For 900 C, the mass of Cu deposited	g of Cu.
$= (63 \text{ g mol}^{-1} \times 900 \text{ C})/(2 \times 96487 \text{ C mol}^{-1}) = 0.293$	38 g.
Products of electrolysis depend on the nature of electrolysed and the type of electrodes being used. If inert (e.g., platinum or gold), it does not participate i reaction and acts only as source or sink for electrons hand, if the electrode is reactive, it participates in the elec Thus, the products of electrolysis may be different for re	material being the electrode is in the chemical s. On the other ectrode reaction. eactive and inert

Batteries it is the source of energy in which chemical energy converted into electrical energy with the help of redox reaction. A battery is made up of number of cells compact together to give the desired voltage ,there are two types of batteries primary battery and secondary battery.

Primary battery which is used only once and after use over a period of time the battery becomes dead and cannot be reused again it is also known as **Leclanche cell**.

The zinc container act as the anode and the cathode is made of carbon (graphite)rod surrounded by powdered manganese dioxide and carbon

The space between the electrode is filled by a paste of Ammonium Chloride and zinc chloride, the electrode reactions are complex .

